Cargando…
Automatic deep learning multicontrast corpus callosum segmentation in multiple sclerosis
BACKGROUND AND PURPOSE: Corpus callosum (CC) atrophy is predictive of future disability in multiple sclerosis (MS). However, current segmentation methods are either labor‐ or computationally intensive. We therefore developed an automated deep learning‐based CC segmentation tool and hypothesized that...
Autores principales: | Brusini, Irene, Platten, Michael, Ouellette, Russell, Piehl, Fredrik, Wang, Chunliang, Granberg, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304261/ https://www.ncbi.nlm.nih.gov/pubmed/35083815 http://dx.doi.org/10.1111/jon.12972 |
Ejemplares similares
-
Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis
por: Platten, Michael, et al.
Publicado: (2022) -
Automatic Extraction of the Centerline of Corpus Callosum from Segmented Mid-Sagittal MR Images
por: Gao, Wenpeng, et al.
Publicado: (2018) -
Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis
por: Bonnier, Guillaume, et al.
Publicado: (2015) -
Dilated Virchow-Robin Spaces are a Marker for Arterial Disease in Multiple Sclerosis
por: Ineichen, Benjamin V., et al.
Publicado: (2023) -
Dilated Virchow-Robin spaces are a marker for arterial disease in multiple sclerosis
por: Ineichen, Benjamin V., et al.
Publicado: (2023)