Cargando…

Robust corrosion guard, mechanical and UV aging properties of metal complex/epoxy hybrid composite coating for C-steel applications

Incorporation of novel-prepared metal–organic complexes as crosslinking accelerators for multifunctional epoxy was on top of interest by coating formulators. The present work investigated the loading of mixed ligand metal complexes (Zr(IV) and Cu(II)) of metformin (MF) and 2.2′bipyridine (Bipy) agai...

Descripción completa

Detalles Bibliográficos
Autores principales: Fadl, A. M., Sadeek, S. A., Magdy, Laila, Abdou, M. I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304329/
https://www.ncbi.nlm.nih.gov/pubmed/35864183
http://dx.doi.org/10.1038/s41598-022-16348-3
Descripción
Sumario:Incorporation of novel-prepared metal–organic complexes as crosslinking accelerators for multifunctional epoxy was on top of interest by coating formulators. The present work investigated the loading of mixed ligand metal complexes (Zr(IV) and Cu(II)) of metformin (MF) and 2.2′bipyridine (Bipy) against the free ligands as crosslinking modifiers via some epoxy coating formulations to assess their superb performances on the C-steel surface. Zr(IV) and Cu(II) demonstrated the minor energy gap (∆E) values at 0.190 au compared to free MF and Bipy according to the calculated energy values, and this behavior reflected their enhanced properties via epoxy coating applications. EIS measurements using high saline formation water as a corrosive medium were performed and offered that PA-DGEBA/MC-Cu coated film showed the superior resistance values (R(ct) = 940 and R(c) = 930 kΩ cm(2)). The accelerated corrosion salt spray experiment clarified that PA-DGEBA/MC-Cu coating achieved the least corrosion rate at 0.00049 mm/y and exhibited the highest protection efficiency of 99.84%. SEM/EDX combination survey affirmed the protective performance of the checked coatings. AFM microanalysis confirmed that surface-treated Cu(II) coating displayed the smoothest film surface with complete curing. Mechanical durability properties were evaluated and the obtained results illustrated that pull-off adhesion for PA-DGEBA/MC-Cu coated film fulfilled the highest adhesion strength at 6.3 MPa, the best bend character at 77, and the maximum impact resistance at 59.7 J. UV immovability trial was performed at 10 irradiance and 80 h duration. PA-DGEBA/MC-Cu coated film displayed the highest resistance to UV irradiance with blistering (#8 size and few frequencies) in addition to offering a minor gloss variation and matt properties.