Cargando…
Sulfur and chlorine budgets control the ore fertility of arc magmas
Continental arc magmas supply the ore-forming element budget of most globally important porphyry-type ore deposits. However, the processes enabling certain arc segments to preferentially generate giant porphyry deposits remain highly debated. Here we evaluate the large-scale covariation of key ore-f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304346/ https://www.ncbi.nlm.nih.gov/pubmed/35864119 http://dx.doi.org/10.1038/s41467-022-31894-0 |
Sumario: | Continental arc magmas supply the ore-forming element budget of most globally important porphyry-type ore deposits. However, the processes enabling certain arc segments to preferentially generate giant porphyry deposits remain highly debated. Here we evaluate the large-scale covariation of key ore-forming constituents in this setting by studying silicate melt inclusions in volcanic rocks from a fertile-to-barren segment of the Andean Southern Volcanic Zone (33–40 °S). We show that the north-to-south, fertile-to-barren gradient is characterized by a northward increase in S and Cl concentrations and a simultaneous decrease in Cu. Consequently, we suggest that the concentration of S and Cl rather than the concentration of ore metals regulates magmatic-hydrothermal ore fertility, and that the loss of volatiles prior to arrival in the upper crust impacts ore-forming potential more than magmatic sulfide saturation-related ore metal scavenging. |
---|