Cargando…
Interpreting models interpreting brain dynamics
Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dime...
Autores principales: | Rahman, Md. Mahfuzur, Mahmood, Usman, Lewis, Noah, Gazula, Harshvardhan, Fedorov, Alex, Fu, Zening, Calhoun, Vince D., Plis, Sergey M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304350/ https://www.ncbi.nlm.nih.gov/pubmed/35864279 http://dx.doi.org/10.1038/s41598-022-15539-2 |
Ejemplares similares
-
Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI
por: Mahmood, Usman, et al.
Publicado: (2022) -
Decentralized Analysis of Brain Imaging Data: Voxel-Based Morphometry and Dynamic Functional Network Connectivity
por: Gazula, Harshvardhan, et al.
Publicado: (2018) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Abrol, Anees, et al.
Publicado: (2021) -
Chromatic fusion: generative multimodal neuroimaging data fusion provides multi-informed insights into schizophrenia
por: Geenjaar, Eloy P.T., et al.
Publicado: (2023) -
Chromatic fusion: Generative multimodal neuroimaging data fusion provides multi‐informed insights into schizophrenia
por: Geenjaar, Eloy P.T., et al.
Publicado: (2023)