Cargando…
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Deep learning techniques have been increasingly applied to the natural sciences, e.g., for property prediction and optimization or material discovery. A fundamental ingredient of such approaches is the vast quantity of labeled data needed to train the model. This poses severe challenges in data-scar...
Autores principales: | Loh, Charlotte, Christensen, Thomas, Dangovski, Rumen, Kim, Samuel, Soljačić, Marin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304370/ https://www.ncbi.nlm.nih.gov/pubmed/35864122 http://dx.doi.org/10.1038/s41467-022-31915-y |
Ejemplares similares
-
Discovering conservation laws using optimal transport and manifold learning
por: Lu, Peter Y., et al.
Publicado: (2023) -
Physics-informed learning of governing equations from scarce data
por: Chen, Zhao, et al.
Publicado: (2021) -
Platinum Growing Scarce
Publicado: (1889) -
Learning to perform contrast-invariant cancellation of redundant stimuli
por: Mejias, Jorge F, et al.
Publicado: (2013) -
Molecular property prediction by semantic-invariant contrastive learning
por: Zhang, Ziqiao, et al.
Publicado: (2023)