Cargando…
Decision effect of a deep-learning model to assist a head computed tomography order for pediatric traumatic brain injury
The study aims to measure the effectiveness of an AI-based traumatic intracranial hemorrhage prediction model in the decisions of emergency physicians regarding ordering head computed tomography (CT) scans. We developed a deep-learning model for predicting traumatic intracranial hemorrhages (DEEPTIC...
Autores principales: | Heo, Sejin, Ha, Juhyung, Jung, Weon, Yoo, Suyoung, Song, Yeejun, Kim, Taerim, Cha, Won Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304372/ https://www.ncbi.nlm.nih.gov/pubmed/35864281 http://dx.doi.org/10.1038/s41598-022-16313-0 |
Ejemplares similares
-
EARLY PREDICTION OF UNEXPECTED LATENT SHOCK IN THE EMERGENCY DEPARTMENT USING VITAL SIGNS
por: Chang, Hansol, et al.
Publicado: (2023) -
Feasibility of patch-type wireless 12-lead electrocardiogram in laypersons
por: Yoon, Sunyoung, et al.
Publicado: (2023) -
Machine learning pre-hospital real-time cardiac arrest outcome prediction (PReCAP) using time-adaptive cohort model based on the Pan-Asian Resuscitation Outcome Study
por: Chang, Hansol, et al.
Publicado: (2023) -
National Surveillance of Pediatric Out-of-Hospital Cardiac Arrest in Korea: The 10-Year Trend From 2009 to 2018
por: Kim, Minha, et al.
Publicado: (2022) -
Effectiveness of a Real-Time Ventilation Feedback Device for Guiding Adequate Minute Ventilation: A Manikin Simulation Study
por: Heo, Sejin, et al.
Publicado: (2020)