Cargando…
Inferring the underlying multivariate structure from bivariate networks with highly correlated nodes
Complex systems are often described mathematically as networks. Inferring the actual interactions from observed dynamics of the nodes of the networks is a challenging inverse task. It is crucial to distinguish direct and indirect interactions to allow for a robust identification of the underlying ne...
Autores principales: | Loske, Philipp, Schelter, Bjoern O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304421/ https://www.ncbi.nlm.nih.gov/pubmed/35864116 http://dx.doi.org/10.1038/s41598-022-16296-y |
Ejemplares similares
-
Multivariate Longitudinal Analysis with Bivariate Correlation Test
por: Adjakossa, Eric Houngla, et al.
Publicado: (2016) -
Inferring network properties from time series using transfer entropy and mutual information: Validation of multivariate versus bivariate approaches
por: Novelli, Leonardo, et al.
Publicado: (2021) -
A Bayesian Model for Bivariate Causal Inference
por: Kurthen, Maximilian, et al.
Publicado: (2019) -
Networks: On the relation of bi- and multivariate measures
por: Mader, Wolfgang, et al.
Publicado: (2015) -
Matlab Open Source Code: Noise-Assisted Multivariate Empirical Mode Decomposition Based Causal Decomposition for Causality Inference of Bivariate Time Series
por: Zhang, Yi, et al.
Publicado: (2022)