Cargando…
A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation
This study aimed to compare the efficacies of conventional and non-conventional (modified hydrostatic microfluidic pumpless device, MHPD) systems on ovarian tissue culture and in vitro follicle growth using a mouse model. A total of 56 ovarian cortical tissues retrieved from seven wild-type mice wer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Obstetrics and Gynecology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304444/ https://www.ncbi.nlm.nih.gov/pubmed/35707972 http://dx.doi.org/10.5468/ogs.22012 |
_version_ | 1784752105622339584 |
---|---|
author | Thuwanut, Paweena Pimpin, Alongkorn Thatsanabunjong, Fueangrat Srisuwatanasagul, Sayamon Sereepapong, Wisan Sirayapiwat, Porntip |
author_facet | Thuwanut, Paweena Pimpin, Alongkorn Thatsanabunjong, Fueangrat Srisuwatanasagul, Sayamon Sereepapong, Wisan Sirayapiwat, Porntip |
author_sort | Thuwanut, Paweena |
collection | PubMed |
description | This study aimed to compare the efficacies of conventional and non-conventional (modified hydrostatic microfluidic pumpless device, MHPD) systems on ovarian tissue culture and in vitro follicle growth using a mouse model. A total of 56 ovarian cortical tissues retrieved from seven wild-type mice were divided into three groups: 1) fresh control, 2) conventional culture system (control), and 3) non-conventional system with MHPD. Ovarian tissues were cultured for 96 hours and evaluated for follicle morphology, developmental stage, intact follicle density, and relative gene expression levels (proliferating cell nuclear antigen, insulin like growth factor 1, BAX, and Bcl-2). Our major data demonstrated that the mean percentage of primary follicle development was increased by the MHPD (P<0.05). In addition, this device could maintain and support follicle development better than the conventional culture systems. However, the overall outcomes were not significantly improved by our first-design prototype. Consequently, next-generation platforms should be developed as alternative medical tools for fertility preservation research. |
format | Online Article Text |
id | pubmed-9304444 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Korean Society of Obstetrics and Gynecology |
record_format | MEDLINE/PubMed |
spelling | pubmed-93044442022-08-01 A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation Thuwanut, Paweena Pimpin, Alongkorn Thatsanabunjong, Fueangrat Srisuwatanasagul, Sayamon Sereepapong, Wisan Sirayapiwat, Porntip Obstet Gynecol Sci Short Communication This study aimed to compare the efficacies of conventional and non-conventional (modified hydrostatic microfluidic pumpless device, MHPD) systems on ovarian tissue culture and in vitro follicle growth using a mouse model. A total of 56 ovarian cortical tissues retrieved from seven wild-type mice were divided into three groups: 1) fresh control, 2) conventional culture system (control), and 3) non-conventional system with MHPD. Ovarian tissues were cultured for 96 hours and evaluated for follicle morphology, developmental stage, intact follicle density, and relative gene expression levels (proliferating cell nuclear antigen, insulin like growth factor 1, BAX, and Bcl-2). Our major data demonstrated that the mean percentage of primary follicle development was increased by the MHPD (P<0.05). In addition, this device could maintain and support follicle development better than the conventional culture systems. However, the overall outcomes were not significantly improved by our first-design prototype. Consequently, next-generation platforms should be developed as alternative medical tools for fertility preservation research. Korean Society of Obstetrics and Gynecology 2022-07 2022-06-16 /pmc/articles/PMC9304444/ /pubmed/35707972 http://dx.doi.org/10.5468/ogs.22012 Text en Copyright © 2022 Korean Society of Obstetrics and Gynecology https://creativecommons.org/licenses/by-nc/3.0/Articles published in Obstet Gynecol Sci are open-access, distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Communication Thuwanut, Paweena Pimpin, Alongkorn Thatsanabunjong, Fueangrat Srisuwatanasagul, Sayamon Sereepapong, Wisan Sirayapiwat, Porntip A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
title | A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
title_full | A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
title_fullStr | A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
title_full_unstemmed | A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
title_short | A modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
title_sort | modified hydrostatic microfluidic pumpless device for in vitro murine ovarian tissue culture as research model for fertility preservation |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304444/ https://www.ncbi.nlm.nih.gov/pubmed/35707972 http://dx.doi.org/10.5468/ogs.22012 |
work_keys_str_mv | AT thuwanutpaweena amodifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT pimpinalongkorn amodifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT thatsanabunjongfueangrat amodifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT srisuwatanasagulsayamon amodifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT sereepapongwisan amodifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT sirayapiwatporntip amodifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT thuwanutpaweena modifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT pimpinalongkorn modifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT thatsanabunjongfueangrat modifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT srisuwatanasagulsayamon modifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT sereepapongwisan modifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation AT sirayapiwatporntip modifiedhydrostaticmicrofluidicpumplessdeviceforinvitromurineovariantissuecultureasresearchmodelforfertilitypreservation |