Cargando…
MSPJ: Discovering potential biomarkers in small gene expression datasets via ensemble learning
In transcriptomics, differentially expressed genes (DEGs) provide fine-grained phenotypic resolution for comparisons between groups and insights into molecular mechanisms underlying the pathogenesis of complex diseases or phenotypes. The robust detection of DEGs from large datasets is well-establish...
Autores principales: | Yin, HuaChun, Tao, JingXin, Peng, Yuyang, Xiong, Ying, Li, Bo, Li, Song, Yang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304602/ https://www.ncbi.nlm.nih.gov/pubmed/35891786 http://dx.doi.org/10.1016/j.csbj.2022.07.022 |
Ejemplares similares
- Discovering Dutch Ensembles, MCC9121:
- Discovering Dutch Ensembles, MCC9122:
-
Identification of Orphan Genes in Unbalanced Datasets Based on Ensemble Learning
por: Gao, Qijuan, et al.
Publicado: (2020) -
EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences
por: Hu, Jianjun, et al.
Publicado: (2006) -
Pollen Grain Classification Based on Ensemble Transfer Learning on the Cretan Pollen Dataset
por: Tsiknakis, Nikos, et al.
Publicado: (2022)