Cargando…

Using population-scale transcriptomic and genomic data to map 3′ UTR alternative polyadenylation quantitative trait loci

3′ UTR alternative polyadenylation (APA) quantitative trait loci (3′aQTL) can explain approximately 16.1% of trait-associated non-coding variants and is largely distinct from other molecular QTLs. Here, we describe a bioinformatic protocol for identifying 3′aQTLs through standard RNA-seq and matched...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Xudong, Ding, Ruofan, Chen, Wenyan, Wang, Gao, Cheng, Shumin, Wang, Qin, Li, Wei, Li, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304671/
https://www.ncbi.nlm.nih.gov/pubmed/35874472
http://dx.doi.org/10.1016/j.xpro.2022.101566
Descripción
Sumario:3′ UTR alternative polyadenylation (APA) quantitative trait loci (3′aQTL) can explain approximately 16.1% of trait-associated non-coding variants and is largely distinct from other molecular QTLs. Here, we describe a bioinformatic protocol for identifying 3′aQTLs through standard RNA-seq and matched genomic data. This protocol allows users to analyze dynamic APA events, identify common genetic variants associated with differential 3′ UTR usage, and predict the potential causal variants that affect APA. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).