Cargando…
Performance of Machine Learning for Tissue Outcome Prediction in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis
Machine learning (ML) has been proposed for lesion segmentation in acute ischemic stroke (AIS). This study aimed to provide a systematic review and meta-analysis of the overall performance of current ML algorithms for final infarct prediction from baseline imaging. We made a comprehensive literature...
Autores principales: | Wang, Xinrui, Fan, Yiming, Zhang, Nan, Li, Jing, Duan, Yang, Yang, Benqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305175/ https://www.ncbi.nlm.nih.gov/pubmed/35873778 http://dx.doi.org/10.3389/fneur.2022.910259 |
Ejemplares similares
-
Machine Learning in Acute Ischemic Stroke Neuroimaging
por: Kamal, Haris, et al.
Publicado: (2018) -
Interpretable machine learning for prediction of clinical outcomes in acute ischemic stroke
por: Lee, Joonwon, et al.
Publicado: (2023) -
Predicting 6-Month Unfavorable Outcome of Acute Ischemic Stroke Using Machine Learning
por: Li, Xiang, et al.
Publicado: (2020) -
Comparison of ischemic stroke diagnosis models based on machine learning
por: Yang, Wan-Xia, et al.
Publicado: (2022) -
Quantifying the Impact of Chronic Ischemic Injury on Clinical Outcomes in Acute Stroke With Machine Learning
por: Mah, Yee-Haur, et al.
Publicado: (2020)