Cargando…

An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)

PURPOSE: To develop an automated machine‐learning‐based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. METHODS: An MR physics‐governed AI system was trained to generate optimized acquisition...

Descripción completa

Detalles Bibliográficos
Autores principales: Perlman, Or, Zhu, Bo, Zaiss, Moritz, Rosen, Matthew S., Farrar, Christian T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305180/
https://www.ncbi.nlm.nih.gov/pubmed/35092076
http://dx.doi.org/10.1002/mrm.29173
_version_ 1784752263320829952
author Perlman, Or
Zhu, Bo
Zaiss, Moritz
Rosen, Matthew S.
Farrar, Christian T.
author_facet Perlman, Or
Zhu, Bo
Zaiss, Moritz
Rosen, Matthew S.
Farrar, Christian T.
author_sort Perlman, Or
collection PubMed
description PURPOSE: To develop an automated machine‐learning‐based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. METHODS: An MR physics‐governed AI system was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and in vivo mouse brains at 9.4T. RESULTS: The acquisition times for AutoCEST optimized schedules ranged from 35 to 71 s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearson’s [Formula: see text] , [Formula: see text]), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearson’s [Formula: see text] , [Formula: see text]). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearson’s [Formula: see text] , [Formula: see text]) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearson’s [Formula: see text] , [Formula: see text]). The AutoCEST in vivo mouse brain semi‐solid proton volume fractions were lower in the cortex (12.77% ± 0.75%) compared to the white matter (19.80% ± 0.50%), as expected. CONCLUSION: AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps.
format Online
Article
Text
id pubmed-9305180
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93051802022-07-28 An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST) Perlman, Or Zhu, Bo Zaiss, Moritz Rosen, Matthew S. Farrar, Christian T. Magn Reson Med Research Articles—Imaging Methodology PURPOSE: To develop an automated machine‐learning‐based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. METHODS: An MR physics‐governed AI system was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and in vivo mouse brains at 9.4T. RESULTS: The acquisition times for AutoCEST optimized schedules ranged from 35 to 71 s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearson’s [Formula: see text] , [Formula: see text]), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearson’s [Formula: see text] , [Formula: see text]). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearson’s [Formula: see text] , [Formula: see text]) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearson’s [Formula: see text] , [Formula: see text]). The AutoCEST in vivo mouse brain semi‐solid proton volume fractions were lower in the cortex (12.77% ± 0.75%) compared to the white matter (19.80% ± 0.50%), as expected. CONCLUSION: AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps. John Wiley and Sons Inc. 2022-01-28 2022-06 /pmc/articles/PMC9305180/ /pubmed/35092076 http://dx.doi.org/10.1002/mrm.29173 Text en © 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles—Imaging Methodology
Perlman, Or
Zhu, Bo
Zaiss, Moritz
Rosen, Matthew S.
Farrar, Christian T.
An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)
title An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)
title_full An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)
title_fullStr An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)
title_full_unstemmed An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)
title_short An end‐to‐end AI‐based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST)
title_sort end‐to‐end ai‐based framework for automated discovery of rapid cest/mt mri acquisition protocols and molecular parameter quantification (autocest)
topic Research Articles—Imaging Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305180/
https://www.ncbi.nlm.nih.gov/pubmed/35092076
http://dx.doi.org/10.1002/mrm.29173
work_keys_str_mv AT perlmanor anendtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT zhubo anendtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT zaissmoritz anendtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT rosenmatthews anendtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT farrarchristiant anendtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT perlmanor endtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT zhubo endtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT zaissmoritz endtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT rosenmatthews endtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest
AT farrarchristiant endtoendaibasedframeworkforautomateddiscoveryofrapidcestmtmriacquisitionprotocolsandmolecularparameterquantificationautocest