Cargando…

An AMPK biosensor for Caenorhabditis elegans

Adenosine monophosphate-activated kinase (AMPK) functions in a broad spectrum of cellular stress response pathways. Investigation of AMPK activity has been limited to whole-organism analyses in Caenorhabditis elegans which does not allow for observations of cellular heterogeneity, temporal dynamics,...

Descripción completa

Detalles Bibliográficos
Autores principales: Carman, Lynly, Schuck, Ryan J, Li, Edwin, Nelson, Matthew D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Caltech Library 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305316/
https://www.ncbi.nlm.nih.gov/pubmed/35874603
http://dx.doi.org/10.17912/micropub.biology.000596
Descripción
Sumario:Adenosine monophosphate-activated kinase (AMPK) functions in a broad spectrum of cellular stress response pathways. Investigation of AMPK activity has been limited to whole-organism analyses in Caenorhabditis elegans which does not allow for observations of cellular heterogeneity, temporal dynamics, or correlation with physiological states in real time. We codon adapted the genetically-coded AMPK biosensor, called AMPKAR-EV, for use in C. elegans . We report heterogeneity of activation in different tissues (intestine, neurons, muscle) and test the biosensor in the context of two missense mutations affecting residues T243 and S244 on the AMPK α subunit, AAK-2, which are predicted regulatory sites.