Cargando…

Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations

The chemical processing of low‐dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N‐doped molecular graphene nanoribbons (GNRs) with mass‐selected ultra‐h...

Descripción completa

Detalles Bibliográficos
Autores principales: Ran, Wei, Walz, Andreas, Stoiber, Karolina, Knecht, Peter, Xu, Hongxiang, Papageorgiou, Anthoula C., Huettig, Annette, Cortizo‐Lacalle, Diego, Mora‐Fuentes, Juan P., Mateo‐Alonso, Aurelio, Schlichting, Hartmut, Reichert, Joachim, Barth, Johannes V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305426/
https://www.ncbi.nlm.nih.gov/pubmed/35077609
http://dx.doi.org/10.1002/anie.202111816
_version_ 1784752322930278400
author Ran, Wei
Walz, Andreas
Stoiber, Karolina
Knecht, Peter
Xu, Hongxiang
Papageorgiou, Anthoula C.
Huettig, Annette
Cortizo‐Lacalle, Diego
Mora‐Fuentes, Juan P.
Mateo‐Alonso, Aurelio
Schlichting, Hartmut
Reichert, Joachim
Barth, Johannes V.
author_facet Ran, Wei
Walz, Andreas
Stoiber, Karolina
Knecht, Peter
Xu, Hongxiang
Papageorgiou, Anthoula C.
Huettig, Annette
Cortizo‐Lacalle, Diego
Mora‐Fuentes, Juan P.
Mateo‐Alonso, Aurelio
Schlichting, Hartmut
Reichert, Joachim
Barth, Johannes V.
author_sort Ran, Wei
collection PubMed
description The chemical processing of low‐dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N‐doped molecular graphene nanoribbons (GNRs) with mass‐selected ultra‐high vacuum electrospray controlled ion beam deposition on surfaces and real‐space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on‐surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal–organic coordination polymers.
format Online
Article
Text
id pubmed-9305426
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93054262022-07-28 Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations Ran, Wei Walz, Andreas Stoiber, Karolina Knecht, Peter Xu, Hongxiang Papageorgiou, Anthoula C. Huettig, Annette Cortizo‐Lacalle, Diego Mora‐Fuentes, Juan P. Mateo‐Alonso, Aurelio Schlichting, Hartmut Reichert, Joachim Barth, Johannes V. Angew Chem Int Ed Engl Research Articles The chemical processing of low‐dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N‐doped molecular graphene nanoribbons (GNRs) with mass‐selected ultra‐high vacuum electrospray controlled ion beam deposition on surfaces and real‐space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on‐surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal–organic coordination polymers. John Wiley and Sons Inc. 2022-02-16 2022-03-28 /pmc/articles/PMC9305426/ /pubmed/35077609 http://dx.doi.org/10.1002/anie.202111816 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Ran, Wei
Walz, Andreas
Stoiber, Karolina
Knecht, Peter
Xu, Hongxiang
Papageorgiou, Anthoula C.
Huettig, Annette
Cortizo‐Lacalle, Diego
Mora‐Fuentes, Juan P.
Mateo‐Alonso, Aurelio
Schlichting, Hartmut
Reichert, Joachim
Barth, Johannes V.
Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations
title Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations
title_full Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations
title_fullStr Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations
title_full_unstemmed Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations
title_short Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations
title_sort depositing molecular graphene nanoribbons on ag(111) by electrospray controlled ion beam deposition: self‐assembly and on‐surface transformations
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305426/
https://www.ncbi.nlm.nih.gov/pubmed/35077609
http://dx.doi.org/10.1002/anie.202111816
work_keys_str_mv AT ranwei depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT walzandreas depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT stoiberkarolina depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT knechtpeter depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT xuhongxiang depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT papageorgiouanthoulac depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT huettigannette depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT cortizolacallediego depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT morafuentesjuanp depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT mateoalonsoaurelio depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT schlichtinghartmut depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT reichertjoachim depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations
AT barthjohannesv depositingmoleculargraphenenanoribbonsonag111byelectrospraycontrolledionbeamdepositionselfassemblyandonsurfacetransformations