Cargando…
Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte
Halophytes accumulate and sequester high concentrations of salt in vacuoles while maintaining lower levels of salt in the cytoplasm. The current data on cellular and subcellular partitioning of salt in halophytes are, however, limited to only a few dicotyledonous C(3) species. Using cryo‐scanning el...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305513/ https://www.ncbi.nlm.nih.gov/pubmed/35128687 http://dx.doi.org/10.1111/pce.14279 |
_version_ | 1784752343955275776 |
---|---|
author | Oi, Takao Clode, Peta L Taniguchi, Mitsutaka Colmer, Timothy D Kotula, Lukasz |
author_facet | Oi, Takao Clode, Peta L Taniguchi, Mitsutaka Colmer, Timothy D Kotula, Lukasz |
author_sort | Oi, Takao |
collection | PubMed |
description | Halophytes accumulate and sequester high concentrations of salt in vacuoles while maintaining lower levels of salt in the cytoplasm. The current data on cellular and subcellular partitioning of salt in halophytes are, however, limited to only a few dicotyledonous C(3) species. Using cryo‐scanning electron microscopy X‐ray microanalysis, we assessed the concentrations of Na, Cl, K, Ca, Mg, P and S in various cell types within the leaf‐blades of a monocotyledonous C(4) halophyte, Rhodes grass (Chloris gayana). We also linked, for the first time, elemental concentrations in chloroplasts of mesophyll and bundle sheath cells to their ultrastructure and photosynthetic performance of plants grown in nonsaline and saline (200 mM NaCl) conditions. Na and Cl accumulated to the highest levels in xylem parenchyma and epidermal cells, but were maintained at lower concentrations in photosynthetically active mesophyll and bundle sheath cells. Concentrations of Na and Cl in chloroplasts of mesophyll and bundle sheath cells were lower than in their respective vacuoles. No ultrastructural changes were observed in either mesophyll or bundle sheath chloroplasts, and photosynthetic activity was maintained in saline conditions. Salinity tolerance in Rhodes grass is related to specific cellular Na and Cl distributions in leaf tissues, and the ability to regulate Na and Cl concentrations in chloroplasts. |
format | Online Article Text |
id | pubmed-9305513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93055132022-07-28 Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte Oi, Takao Clode, Peta L Taniguchi, Mitsutaka Colmer, Timothy D Kotula, Lukasz Plant Cell Environ Original Articles Halophytes accumulate and sequester high concentrations of salt in vacuoles while maintaining lower levels of salt in the cytoplasm. The current data on cellular and subcellular partitioning of salt in halophytes are, however, limited to only a few dicotyledonous C(3) species. Using cryo‐scanning electron microscopy X‐ray microanalysis, we assessed the concentrations of Na, Cl, K, Ca, Mg, P and S in various cell types within the leaf‐blades of a monocotyledonous C(4) halophyte, Rhodes grass (Chloris gayana). We also linked, for the first time, elemental concentrations in chloroplasts of mesophyll and bundle sheath cells to their ultrastructure and photosynthetic performance of plants grown in nonsaline and saline (200 mM NaCl) conditions. Na and Cl accumulated to the highest levels in xylem parenchyma and epidermal cells, but were maintained at lower concentrations in photosynthetically active mesophyll and bundle sheath cells. Concentrations of Na and Cl in chloroplasts of mesophyll and bundle sheath cells were lower than in their respective vacuoles. No ultrastructural changes were observed in either mesophyll or bundle sheath chloroplasts, and photosynthetic activity was maintained in saline conditions. Salinity tolerance in Rhodes grass is related to specific cellular Na and Cl distributions in leaf tissues, and the ability to regulate Na and Cl concentrations in chloroplasts. John Wiley and Sons Inc. 2022-02-24 2022-05 /pmc/articles/PMC9305513/ /pubmed/35128687 http://dx.doi.org/10.1111/pce.14279 Text en © 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Oi, Takao Clode, Peta L Taniguchi, Mitsutaka Colmer, Timothy D Kotula, Lukasz Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte |
title | Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte |
title_full | Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte |
title_fullStr | Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte |
title_full_unstemmed | Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte |
title_short | Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C(4) monocotyledonous halophyte |
title_sort | salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a c(4) monocotyledonous halophyte |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305513/ https://www.ncbi.nlm.nih.gov/pubmed/35128687 http://dx.doi.org/10.1111/pce.14279 |
work_keys_str_mv | AT oitakao salttoleranceinrelationtoelementalconcentrationsinleafcellvacuolesandchloroplastsofac4monocotyledonoushalophyte AT clodepetal salttoleranceinrelationtoelementalconcentrationsinleafcellvacuolesandchloroplastsofac4monocotyledonoushalophyte AT taniguchimitsutaka salttoleranceinrelationtoelementalconcentrationsinleafcellvacuolesandchloroplastsofac4monocotyledonoushalophyte AT colmertimothyd salttoleranceinrelationtoelementalconcentrationsinleafcellvacuolesandchloroplastsofac4monocotyledonoushalophyte AT kotulalukasz salttoleranceinrelationtoelementalconcentrationsinleafcellvacuolesandchloroplastsofac4monocotyledonoushalophyte |