Cargando…
Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high‐throughput plant phenotyping
Hyperspectral vegetation indices (VIs) are widely deployed in agriculture remote sensing and plant phenotyping to estimate plant biophysical and biochemical traits. However, existing VIs consist mainly of simple two‐band indices that limit the net performance and often do not generalise well for tra...
Autores principales: | Koh, Joshua C.O., Banerjee, Bikram P., Spangenberg, German, Kant, Surya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305872/ https://www.ncbi.nlm.nih.gov/pubmed/34997968 http://dx.doi.org/10.1111/nph.17947 |
Ejemplares similares
-
High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response
por: Banerjee, Bikram P, et al.
Publicado: (2020) -
Corrigendum to: High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response
por: Banerjee, Bikram P, et al.
Publicado: (2021) -
CBM: An IoT Enabled LiDAR Sensor for In-Field Crop Height and Biomass Measurements
por: Banerjee, Bikram Pratap, et al.
Publicado: (2021) -
Mixed Script Identification Using Automated DNN Hyperparameter Optimization
por: Yasir, Muhammad, et al.
Publicado: (2021) -
Geometric Hyperparameter Optimisation of ALICE Monte Carlo Transport Simulations - Summer Student Report
por: Swain, Anthony
Publicado: (2023)