Cargando…
Combining Machine Learning and Molecular Simulations to Unlock Gas Separation Potentials of MOF Membranes and MOF/Polymer MMMs
[Image: see text] Due to the enormous increase in the number of metal-organic frameworks (MOFs), combining molecular simulations with machine learning (ML) would be a very useful approach for the accurate and rapid assessment of the separation performances of thousands of materials. In this work, we...
Autores principales: | Daglar, Hilal, Keskin, Seda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305976/ https://www.ncbi.nlm.nih.gov/pubmed/35818710 http://dx.doi.org/10.1021/acsami.2c08977 |
Ejemplares similares
-
Recent advances in simulating gas permeation through MOF membranes
por: Daglar, Hilal, et al.
Publicado: (2021) -
Effect of Metal–Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs
por: Daglar, Hilal, et al.
Publicado: (2021) -
Molecular Simulations of MOF Membranes and Performance
Predictions of MOF/Polymer Mixed Matrix Membranes for CO(2)/CH(4) Separations
por: Altintas, Cigdem, et al.
Publicado: (2018) -
Computer simulations of 4240 MOF membranes for H(2)/CH(4) separations: insights into structure–performance relations
por: Altintas, Cigdem, et al.
Publicado: (2018) -
Integrating Molecular
Simulations with Machine Learning
Guides in the Design and Synthesis of [BMIM][BF(4)]/MOF Composites
for CO(2)/N(2) Separation
por: Daglar, Hilal, et al.
Publicado: (2023)