Cargando…
ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data
BACKGROUND: In recent years, the introduction of single-cell RNA sequencing (scRNA-seq) has enabled the analysis of a cell’s transcriptome at an unprecedented granularity and processing speed. The experimental outcome of applying this technology is a [Formula: see text] matrix containing aggregated...
Autores principales: | Malec, Marcin, Kurban, Hasan, Dalkilic, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306045/ https://www.ncbi.nlm.nih.gov/pubmed/35869420 http://dx.doi.org/10.1186/s12859-022-04814-8 |
Ejemplares similares
-
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019) -
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
por: Zheng, Yan, et al.
Publicado: (2021) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
DrImpute: imputing dropout events in single cell RNA sequencing data
por: Gong, Wuming, et al.
Publicado: (2018) -
Impute the missing data using retrieved dropouts
por: Wang, Shuai, et al.
Publicado: (2022)