Cargando…
Machine intelligence-driven framework for optimized hit selection in virtual screening
Virtual screening (VS) aids in prioritizing unknown bio-interactions between compounds and protein targets for empirical drug discovery. In standard VS exercise, roughly 10% of top-ranked molecules exhibit activity when examined in biochemical assays, which accounts for many false positive hits, mak...
Autores principales: | Kumar, Neeraj, Acharya, Vishal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306080/ https://www.ncbi.nlm.nih.gov/pubmed/35869511 http://dx.doi.org/10.1186/s13321-022-00630-7 |
Ejemplares similares
-
A statistical framework to evaluate virtual screening
por: Zhao, Wei, et al.
Publicado: (2009) -
Rscreenorm: normalization of CRISPR and siRNA screen data for more reproducible hit selection
por: Bachas, Costa, et al.
Publicado: (2018) -
Target-driven machine learning-enabled virtual screening (TAME-VS) platform for early-stage hit identification
por: Bian, Yuemin, et al.
Publicado: (2023) -
Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening
por: Tai, Hio Kuan, et al.
Publicado: (2018) -
Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors
por: Atanasova, Mariyana, et al.
Publicado: (2022)