Cargando…
The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy
BACKGROUND: Trimethylamine N-oxide (TMAO)-related metabolites are associated with the pathogenesis of atherosclerotic cardiovascular disease (ASCVD) and are known to disrupt lipid metabolism. The aims of this study were to evaluate the associations between TMAO-related metabolites and blood lipids a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306211/ https://www.ncbi.nlm.nih.gov/pubmed/35864500 http://dx.doi.org/10.1186/s12944-022-01673-3 |
Sumario: | BACKGROUND: Trimethylamine N-oxide (TMAO)-related metabolites are associated with the pathogenesis of atherosclerotic cardiovascular disease (ASCVD) and are known to disrupt lipid metabolism. The aims of this study were to evaluate the associations between TMAO-related metabolites and blood lipids and determine how lowering the lipid profile via rosuvastatin therapy influences TMAO-related metabolites. METHODS: A total of 112 patients with suspected ASCVD were enrolled in this study. The levels of plasma TMAO-related metabolites, including TMAO, choline, carnitine, betaine, and γ-butyrobetaine (GBB), were analyzed by stable isotope dilution liquid chromatography-tandem mass spectrometry (LC/MS/MS) before and after rosuvastatin therapy in all patients. Statistical methods were used to detect the associations between TMAO-related metabolites and blood lipids and determine how rosuvastatin therapy alters the levels of these metabolites. RESULTS: A significant positive correlation was found between TMAO and triglycerides (TG) (r = 0.303, P < 0.05). Furthermore, significant negative correlations were found between TMAO and high-density lipoprotein cholesterol (HDL-c) and between betaine and low-density lipoprotein cholesterol (LDL-c) (r = − 0.405 and − 0.308, respectively, both P < 0.01). Compared to baseline, significantly lower TMAO levels and higher carnitine, betaine and GBB levels were observed after rosuvastatin therapy, while the lipids decreased significantly (P < 0.05). The significant correlation between TMAO and TG or between betaine and LDL-c disappeared after rosuvastatin therapy (r = 0.050 and − 0.172, respectively, both P > 0.05). However, a significantly positive association between carnitine and TC and a negative association between carnitine and LDL-c or between betaine and TG were found after adjustment for sex, age, body mass index (BMI) and lipids (P < 0.05). CONCLUSIONS: This study suggests that TMAO-related metabolites are significantly associated with blood lipids, although some of them are changed postrosuvastatin therapy. Lower TMAO and higher TMAO precursors were observed after rosuvastatin therapy compared to baseline. This study indicates that elevated TMAO precursors after rosuvastatin therapy and their potential impact on ASCVD should be considered in the clinic. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12944-022-01673-3. |
---|