Cargando…
Marker-controlled watershed with deep edge emphasis and optimized H-minima transform for automatic segmentation of densely cultivated 3D cell nuclei
BACKGROUND: The segmentation of 3D cell nuclei is essential in many tasks, such as targeted molecular radiotherapies (MRT) for metastatic tumours, toxicity screening, and the observation of proliferating cells. In recent years, one popular method for automatic segmentation of nuclei has been deep le...
Autores principales: | Kaseva, Tuomas, Omidali, Bahareh, Hippeläinen, Eero, Mäkelä, Teemu, Wilppu, Ulla, Sofiev, Alexey, Merivaara, Arto, Yliperttula, Marjo, Savolainen, Sauli, Salli, Eero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306214/ https://www.ncbi.nlm.nih.gov/pubmed/35864453 http://dx.doi.org/10.1186/s12859-022-04827-3 |
Ejemplares similares
-
Stiffness-Controlled Hydrogels for 3D Cell Culture Models
por: Merivaara, Arto, et al.
Publicado: (2022) -
Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study
por: Mäkelä, Teemu, et al.
Publicado: (2022) -
Deep learning-aided extraction of outer aortic surface from CT angiography scans of patients with Stanford type B aortic dissection
por: Kesävuori, Risto, et al.
Publicado: (2023) -
3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
por: Öman, Olli, et al.
Publicado: (2019) -
Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR
por: Hippeläinen, Eero, et al.
Publicado: (2017)