Cargando…

Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis

Analysis of health data typically requires development of queries using structured query language (SQL) by a data-analyst. As the SQL queries are manually created, they are prone to errors. In addition, accurate implementation of the queries depends on effective communication with clinical experts,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagholikar, Kavishwar B., Zelle, David, Ainsworth, Layne, Chaney, Kira, Blood, Alexander J., Miller, Angela, Chulyadyo, Rupendra, Oates, Michael, Gordon, William J., Aronson, Samuel J., Scirica, Benjamin M., Murphy, Shawn N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306316/
https://www.ncbi.nlm.nih.gov/pubmed/35874460
http://dx.doi.org/10.1016/j.imu.2022.100996
_version_ 1784752515501260800
author Wagholikar, Kavishwar B.
Zelle, David
Ainsworth, Layne
Chaney, Kira
Blood, Alexander J.
Miller, Angela
Chulyadyo, Rupendra
Oates, Michael
Gordon, William J.
Aronson, Samuel J.
Scirica, Benjamin M.
Murphy, Shawn N.
author_facet Wagholikar, Kavishwar B.
Zelle, David
Ainsworth, Layne
Chaney, Kira
Blood, Alexander J.
Miller, Angela
Chulyadyo, Rupendra
Oates, Michael
Gordon, William J.
Aronson, Samuel J.
Scirica, Benjamin M.
Murphy, Shawn N.
author_sort Wagholikar, Kavishwar B.
collection PubMed
description Analysis of health data typically requires development of queries using structured query language (SQL) by a data-analyst. As the SQL queries are manually created, they are prone to errors. In addition, accurate implementation of the queries depends on effective communication with clinical experts, that further makes the analysis error prone. As a potential resolution, we explore an alternative approach wherein a graphical interface that automatically generates the SQL queries is used to perform the analysis. The latter allows clinical experts to directly perform complex queries on the data, despite their unfamiliarity with SQL syntax. The interface provides an intuitive understanding of the query logic which makes the analysis transparent and comprehensible to the clinical study-staff, thereby enhancing the transparency and validity of the analysis. This study demonstrates the feasibility of using a user-friendly interface that automatically generate SQL for analysis of health data. It outlines challenges that will be useful for designing user-friendly tools to improve transparency and reproducibility of data analysis.
format Online
Article
Text
id pubmed-9306316
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-93063162022-07-22 Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis Wagholikar, Kavishwar B. Zelle, David Ainsworth, Layne Chaney, Kira Blood, Alexander J. Miller, Angela Chulyadyo, Rupendra Oates, Michael Gordon, William J. Aronson, Samuel J. Scirica, Benjamin M. Murphy, Shawn N. Inform Med Unlocked Article Analysis of health data typically requires development of queries using structured query language (SQL) by a data-analyst. As the SQL queries are manually created, they are prone to errors. In addition, accurate implementation of the queries depends on effective communication with clinical experts, that further makes the analysis error prone. As a potential resolution, we explore an alternative approach wherein a graphical interface that automatically generates the SQL queries is used to perform the analysis. The latter allows clinical experts to directly perform complex queries on the data, despite their unfamiliarity with SQL syntax. The interface provides an intuitive understanding of the query logic which makes the analysis transparent and comprehensible to the clinical study-staff, thereby enhancing the transparency and validity of the analysis. This study demonstrates the feasibility of using a user-friendly interface that automatically generate SQL for analysis of health data. It outlines challenges that will be useful for designing user-friendly tools to improve transparency and reproducibility of data analysis. 2022 2022-06-25 /pmc/articles/PMC9306316/ /pubmed/35874460 http://dx.doi.org/10.1016/j.imu.2022.100996 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Wagholikar, Kavishwar B.
Zelle, David
Ainsworth, Layne
Chaney, Kira
Blood, Alexander J.
Miller, Angela
Chulyadyo, Rupendra
Oates, Michael
Gordon, William J.
Aronson, Samuel J.
Scirica, Benjamin M.
Murphy, Shawn N.
Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis
title Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis
title_full Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis
title_fullStr Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis
title_full_unstemmed Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis
title_short Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis
title_sort use of automatic sql generation interface to enhance transparency and validity of health-data analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306316/
https://www.ncbi.nlm.nih.gov/pubmed/35874460
http://dx.doi.org/10.1016/j.imu.2022.100996
work_keys_str_mv AT wagholikarkavishwarb useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT zelledavid useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT ainsworthlayne useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT chaneykira useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT bloodalexanderj useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT millerangela useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT chulyadyorupendra useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT oatesmichael useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT gordonwilliamj useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT aronsonsamuelj useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT sciricabenjaminm useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis
AT murphyshawnn useofautomaticsqlgenerationinterfacetoenhancetransparencyandvalidityofhealthdataanalysis