Cargando…
Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow‐Self Organizing Maps algorithm
BACKGROUND: The Flow‐Self Organizing Maps (FlowSOM) artificial intelligence (AI) program, available within the Bioconductor open‐source R‐project, allows for an unsupervised visualization and interpretation of multiparameter flow cytometry (MFC) data. METHODS: Applied to a reference merged file from...
Autores principales: | Porwit, Anna, Violidaki, Despoina, Axler, Olof, Lacombe, Francis, Ehinger, Mats, Béné, Marie C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306598/ https://www.ncbi.nlm.nih.gov/pubmed/35150187 http://dx.doi.org/10.1002/cyto.b.22059 |
Ejemplares similares
-
Definition of Erythroid Differentiation Subsets in Normal Human Bone Marrow Using FlowSOM Unsupervised Cluster Analysis of Flow Cytometry Data
por: Béné, Marie C., et al.
Publicado: (2020) -
An unsupervised neuromorphic clustering algorithm
por: Diamond, Alan, et al.
Publicado: (2019) -
Unsupervised ranking of clustering algorithms by INFOMAX
por: Sikdar, Sandipan, et al.
Publicado: (2020) -
Innovation in Flow Cytometry Analysis: A New Paradigm Delineating Normal or Diseased Bone Marrow Subsets Through Machine Learning
por: Lacombe, Francis, et al.
Publicado: (2019) -
Unsupervised Flow Cytometry Analysis Allows for an Accurate Identification of Minimal Residual Disease Assessment in Acute Myeloid Leukemia
por: Vial, Jean Philippe, et al.
Publicado: (2021)