Cargando…
Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis
During the light‐dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine trip...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306768/ https://www.ncbi.nlm.nih.gov/pubmed/34932847 http://dx.doi.org/10.1002/anie.202114842 |
_version_ | 1784752615077183488 |
---|---|
author | Mengele, Alexander K. Weixler, Dominik Amthor, Sebastian Eikmanns, Bernhard J. Seibold, Gerd M. Rau, Sven |
author_facet | Mengele, Alexander K. Weixler, Dominik Amthor, Sebastian Eikmanns, Bernhard J. Seibold, Gerd M. Rau, Sven |
author_sort | Mengele, Alexander K. |
collection | PubMed |
description | During the light‐dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), respectively. We mimic these basic processes by combining molecular ruthenium polypyridine‐based photocatalysts and inverted vesicles derived from Escherichia coli. Upon irradiation with visible light, the interplay of photocatalytic nicotinamide reduction and enzymatic membrane‐located respiration leads to the simultaneous formation of two biologically active cofactors, NADH (nicotinamide adenine dinucleotide) and ATP, respectively. This inorganic‐biologic hybrid system thus emulates the cofactor delivering function of an active chloroplast. |
format | Online Article Text |
id | pubmed-9306768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93067682022-07-28 Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis Mengele, Alexander K. Weixler, Dominik Amthor, Sebastian Eikmanns, Bernhard J. Seibold, Gerd M. Rau, Sven Angew Chem Int Ed Engl Research Articles During the light‐dependent reaction of photosynthesis, green plants couple photoinduced cascades of redox reactions with transmembrane proton translocations to generate reducing equivalents and chemical energy in the form of NADPH (nicotinamide adenine dinucleotide phosphate) and ATP (adenosine triphosphate), respectively. We mimic these basic processes by combining molecular ruthenium polypyridine‐based photocatalysts and inverted vesicles derived from Escherichia coli. Upon irradiation with visible light, the interplay of photocatalytic nicotinamide reduction and enzymatic membrane‐located respiration leads to the simultaneous formation of two biologically active cofactors, NADH (nicotinamide adenine dinucleotide) and ATP, respectively. This inorganic‐biologic hybrid system thus emulates the cofactor delivering function of an active chloroplast. John Wiley and Sons Inc. 2022-01-28 2022-03-07 /pmc/articles/PMC9306768/ /pubmed/34932847 http://dx.doi.org/10.1002/anie.202114842 Text en © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Mengele, Alexander K. Weixler, Dominik Amthor, Sebastian Eikmanns, Bernhard J. Seibold, Gerd M. Rau, Sven Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis |
title | Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis |
title_full | Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis |
title_fullStr | Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis |
title_full_unstemmed | Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis |
title_short | Transforming Escherichia coli Proteomembranes into Artificial Chloroplasts Using Molecular Photocatalysis |
title_sort | transforming escherichia coli proteomembranes into artificial chloroplasts using molecular photocatalysis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306768/ https://www.ncbi.nlm.nih.gov/pubmed/34932847 http://dx.doi.org/10.1002/anie.202114842 |
work_keys_str_mv | AT mengelealexanderk transformingescherichiacoliproteomembranesintoartificialchloroplastsusingmolecularphotocatalysis AT weixlerdominik transformingescherichiacoliproteomembranesintoartificialchloroplastsusingmolecularphotocatalysis AT amthorsebastian transformingescherichiacoliproteomembranesintoartificialchloroplastsusingmolecularphotocatalysis AT eikmannsbernhardj transformingescherichiacoliproteomembranesintoartificialchloroplastsusingmolecularphotocatalysis AT seiboldgerdm transformingescherichiacoliproteomembranesintoartificialchloroplastsusingmolecularphotocatalysis AT rausven transformingescherichiacoliproteomembranesintoartificialchloroplastsusingmolecularphotocatalysis |