Cargando…
Learning from mistakes—Assessing the performance and uncertainty in process‐based models
Typical applications of process‐ or physically‐based models aim to gain a better process understanding or provide the basis for a decision‐making process. To adequately represent the physical system, models should include all essential processes. However, model errors can still occur. Other than lar...
Autores principales: | Feigl, Moritz, Roesky, Benjamin, Herrnegger, Mathew, Schulz, Karsten, Hayashi, Masaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306826/ https://www.ncbi.nlm.nih.gov/pubmed/35910683 http://dx.doi.org/10.1002/hyp.14515 |
Ejemplares similares
-
Scientists' warning on extreme wildfire risks to water supply
por: Robinne, François‐Nicolas, et al.
Publicado: (2021) -
A multi‐sensor evaluation of precipitation uncertainty for landslide‐triggering storm events
por: Culler, Elsa S., et al.
Publicado: (2021) -
Recognition of district-wise groundwater stress zones using the GLDAS-2 catchment land surface model during lean season in the Indian state of West Bengal
por: Sahoo, Satiprasad, et al.
Publicado: (2021) -
Synergic use of neural networks model and remote sensing algorithms to estimate water clarity indicators in Khanpur reservoir, Pakistan
por: Faizi, Fiza, et al.
Publicado: (2022) -
Assessment of impacts of altered environmental flow on fishing in lower Damodar river basin, India
por: Purnanjali, Chandra, et al.
Publicado: (2022)