Cargando…
lncRNA HAGLR modulates myocardial ischemia–reperfusion injury in mice through regulating miR-133a-3p/MAPK1 axis
Acute myocardial infarction is one of the leading causes of morbidity worldwide, but the underlying mechanism responsible for myocardial ischemia–reperfusion (I/R) injury remains elusive. lncRNA plays roles in inflammatory response, cell apoptosis and regulation of myocardial ischemia. However, whet...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307143/ https://www.ncbi.nlm.nih.gov/pubmed/35937000 http://dx.doi.org/10.1515/med-2022-0519 |
Sumario: | Acute myocardial infarction is one of the leading causes of morbidity worldwide, but the underlying mechanism responsible for myocardial ischemia–reperfusion (I/R) injury remains elusive. lncRNA plays roles in inflammatory response, cell apoptosis and regulation of myocardial ischemia. However, whether lncRNA HAGLR could regulate myocardial I/R injury and the molecular mechanism need to be further investigated. lncRNA has been shown to bind to miRNAs and compete with endogenous RNAs. miR-133a-3p has been shown to regulate cardiomyocyte apoptosis and ischemic myocardial injury. In this work, it has shown that knockdown of HAGLR could suppress inflammatory response and cell apoptosis induced by I/R and, thus, alleviate myocardial I/R injury. HAGLR promoted myocardial I/R injury by inhibiting miR-133a-3p to promote MAPK1 expression. |
---|