Cargando…
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
Motor Imagery Brain-Computer Interfaces (MI-BCIs) are AI-driven systems that capture brain activity patterns associated with mental imagination of movement and convert them into commands for external devices. Traditionally, MI-BCIs operate on Machine Learning (ML) algorithms, which require extensive...
Autores principales: | Tibrewal, Navneet, Leeuwis, Nikki, Alimardani, Maryam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307149/ https://www.ncbi.nlm.nih.gov/pubmed/35867703 http://dx.doi.org/10.1371/journal.pone.0268880 |
Ejemplares similares
-
Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021) -
Functional Connectivity Analysis in Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021) -
Effect of biased feedback on motor imagery learning in BCI-teleoperation system
por: Alimardani, Maryam, et al.
Publicado: (2014) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023)