Cargando…
The geometry of robustness in spiking neural networks
Neural systems are remarkably robust against various perturbations, a phenomenon that still requires a clear explanation. Here, we graphically illustrate how neural networks can become robust. We study spiking networks that generate low-dimensional representations, and we show that the neurons’ subt...
Autores principales: | Calaim, Nuno, Dehmelt, Florian A, Gonçalves, Pedro J, Machens, Christian K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307274/ https://www.ncbi.nlm.nih.gov/pubmed/35635432 http://dx.doi.org/10.7554/eLife.73276 |
Ejemplares similares
-
Fast and flexible sequence induction in spiking neural networks via rapid excitability changes
por: Pang, Rich, et al.
Publicado: (2019) -
Evolving interpretable plasticity for spiking networks
por: Jordan, Jakob, et al.
Publicado: (2021) -
Learning recurrent dynamics in spiking networks
por: Kim, Christopher M, et al.
Publicado: (2018) -
Network design principle for robust oscillatory behaviors with respect to biological noise
por: Qiao, Lingxia, et al.
Publicado: (2022) -
Training deep neural density estimators to identify mechanistic models of neural dynamics
por: Gonçalves, Pedro J, et al.
Publicado: (2020)