Cargando…
Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation
Vitamin D (VD) deficiency is associated with neuroinflammation and neurocognitive deficits in patients with traumatic brain injury (TBI). The present study was aimed at investigating the therapeutic effects of VD and the molecular mechanisms after TBI. After the intraperitoneal injection of VD (1 μg...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307360/ https://www.ncbi.nlm.nih.gov/pubmed/35872863 http://dx.doi.org/10.1155/2022/3363036 |
_version_ | 1784752742750748672 |
---|---|
author | Jiang, Hongsheng Yang, Xinyu Wang, Yanzhou Zhou, Caifeng |
author_facet | Jiang, Hongsheng Yang, Xinyu Wang, Yanzhou Zhou, Caifeng |
author_sort | Jiang, Hongsheng |
collection | PubMed |
description | Vitamin D (VD) deficiency is associated with neuroinflammation and neurocognitive deficits in patients with traumatic brain injury (TBI). The present study was aimed at investigating the therapeutic effects of VD and the molecular mechanisms after TBI. After the intraperitoneal injection of VD (1 μg/kg), sensorimotor and cognitive function was assessed via a series of behavioral tests in TBI rats. Traumatic outcomes were investigated by brain edema, blood-brain barrier (BBB) disruption, and morphologic staining. In vitro, cellular viability and cytotoxicity in primary hippocampal neurons were detected via the MTT method and LDH release. Hippocampal oxidative stress-related enzymes and proinflammatory mediators and the serum concentration of VD were analyzed by ELISA. The expression of VDR, TLR4, MyD88, and NF-κB p65 was measured by Western blot. Furthermore, the levels of M1/M2 microglial markers were quantified using real-time PCR and Western blot. VD treatment significantly increased the serum level of VD and the hippocampal expression of VDR. VD not only effectively alleviated neurocognitive deficits, brain edema, and BBB disruption but also promoted hippocampal neuronal survival in vivo and in vitro. Moreover, VD therapy prevented excessive neuroinflammation and oxidative stress caused by TBI. Mechanically, the hippocampal expression of TLR4, MyD88, and nuclear NF-κB p65 was elevated in the TBI group but robustly restrained by VD treatment. Taken together, VD provides an important neuroprotection through modulating hippocampal microglial M2 polarization and neuroinflammation via the TLR4/MyD88/NF-κB pathway. |
format | Online Article Text |
id | pubmed-9307360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93073602022-07-23 Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation Jiang, Hongsheng Yang, Xinyu Wang, Yanzhou Zhou, Caifeng Biomed Res Int Research Article Vitamin D (VD) deficiency is associated with neuroinflammation and neurocognitive deficits in patients with traumatic brain injury (TBI). The present study was aimed at investigating the therapeutic effects of VD and the molecular mechanisms after TBI. After the intraperitoneal injection of VD (1 μg/kg), sensorimotor and cognitive function was assessed via a series of behavioral tests in TBI rats. Traumatic outcomes were investigated by brain edema, blood-brain barrier (BBB) disruption, and morphologic staining. In vitro, cellular viability and cytotoxicity in primary hippocampal neurons were detected via the MTT method and LDH release. Hippocampal oxidative stress-related enzymes and proinflammatory mediators and the serum concentration of VD were analyzed by ELISA. The expression of VDR, TLR4, MyD88, and NF-κB p65 was measured by Western blot. Furthermore, the levels of M1/M2 microglial markers were quantified using real-time PCR and Western blot. VD treatment significantly increased the serum level of VD and the hippocampal expression of VDR. VD not only effectively alleviated neurocognitive deficits, brain edema, and BBB disruption but also promoted hippocampal neuronal survival in vivo and in vitro. Moreover, VD therapy prevented excessive neuroinflammation and oxidative stress caused by TBI. Mechanically, the hippocampal expression of TLR4, MyD88, and nuclear NF-κB p65 was elevated in the TBI group but robustly restrained by VD treatment. Taken together, VD provides an important neuroprotection through modulating hippocampal microglial M2 polarization and neuroinflammation via the TLR4/MyD88/NF-κB pathway. Hindawi 2022-07-15 /pmc/articles/PMC9307360/ /pubmed/35872863 http://dx.doi.org/10.1155/2022/3363036 Text en Copyright © 2022 Hongsheng Jiang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jiang, Hongsheng Yang, Xinyu Wang, Yanzhou Zhou, Caifeng Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation |
title | Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation |
title_full | Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation |
title_fullStr | Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation |
title_full_unstemmed | Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation |
title_short | Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation |
title_sort | vitamin d protects against traumatic brain injury via modulating tlr4/myd88/nf-κb pathway-mediated microglial polarization and neuroinflammation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307360/ https://www.ncbi.nlm.nih.gov/pubmed/35872863 http://dx.doi.org/10.1155/2022/3363036 |
work_keys_str_mv | AT jianghongsheng vitamindprotectsagainsttraumaticbraininjuryviamodulatingtlr4myd88nfkbpathwaymediatedmicroglialpolarizationandneuroinflammation AT yangxinyu vitamindprotectsagainsttraumaticbraininjuryviamodulatingtlr4myd88nfkbpathwaymediatedmicroglialpolarizationandneuroinflammation AT wangyanzhou vitamindprotectsagainsttraumaticbraininjuryviamodulatingtlr4myd88nfkbpathwaymediatedmicroglialpolarizationandneuroinflammation AT zhoucaifeng vitamindprotectsagainsttraumaticbraininjuryviamodulatingtlr4myd88nfkbpathwaymediatedmicroglialpolarizationandneuroinflammation |