Cargando…

Light Emitting Diode Photobiomodulation Enhances Oxidative Redox Capacity in Murine Macrophages Stimulated with Bothrops jararacussu Venom and Isolated PLA(2)s

Photobiomodulation therapy associated with conventional antivenom treatment has been shown to be effective in reducing the local effects caused by bothropic venoms in preclinical studies. In this study, we analyzed the influence of photobiomodulation using light emitting diode (LED) on the oxidative...

Descripción completa

Detalles Bibliográficos
Autores principales: dos Reis, Valdison Pereira, da Silva Setúbal, Sulamita, Ferreira e Ferreira, Alex A., Santana, Hallison Mota, Silva, Milena Daniela Souza, Sousa, Ortência De Oliveira, Boeno, Charles Nunes, Soares, Andreimar M., Zamuner, Stella R., Zuliani, Juliana P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307370/
https://www.ncbi.nlm.nih.gov/pubmed/35872869
http://dx.doi.org/10.1155/2022/5266211
Descripción
Sumario:Photobiomodulation therapy associated with conventional antivenom treatment has been shown to be effective in reducing the local effects caused by bothropic venoms in preclinical studies. In this study, we analyzed the influence of photobiomodulation using light emitting diode (LED) on the oxidative stress produced by murine macrophages stimulated with Bothrops jararacussu venom and it isolated toxins BthTX-I and BthTX-II. Under LED treatment, we evaluated the activity of the antioxidant enzymes catalase, superoxide dismutase, and peroxidase as well as the release of hydrogen peroxide and the enzyme lactate dehydrogenase. To investigate whether NADPH oxidase complex activation and mitochondrial pathways could contribute to hydrogen peroxide production by macrophages, we tested the effect of two selective inhibitors, apocynin and CCCP3, respectively. Our results showed that LED therapy was able to decrease the production of hydrogen peroxide and the liberation of lactate dehydrogenase, indicating less cell damage. In addition, the antioxidant enzymes catalase, superoxide dismutase, and peroxidase increased in response to LED treatment. The effect of LED treatment on macrophages was inhibited by CCCP3, but not by apocynin. These findings show that LED photobiomodulation treatment protects macrophages, at least in part, by reducing oxidative stress caused B. jararacussu venom and toxins.