Cargando…
Network analysis of preictal iEEG reveals changes in network structure preceding seizure onset
Seizures likely result from aberrant network activity and synchronization. Changes in brain network connectivity may underlie seizure onset. We used a novel method of rapid network model estimation from intracranial electroencephalography (iEEG) data to characterize pre-ictal changes in network stru...
Autores principales: | Sumsky, Stefan, Greenfield, L. John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307526/ https://www.ncbi.nlm.nih.gov/pubmed/35869236 http://dx.doi.org/10.1038/s41598-022-16877-x |
Ejemplares similares
-
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
A multi-frame network model for predicting seizure based on sEEG and iEEG data
por: Lu, Liangfu, et al.
Publicado: (2022) -
A Primer on Hyperdimensional Computing for iEEG Seizure Detection
por: Schindler, Kaspar A., et al.
Publicado: (2021) -
Online Prediction of Lead Seizures from iEEG Data
por: Chen, Hsiang-Han, et al.
Publicado: (2021) -
Extensions of Granger Causality Calculations on Brain Networks for Efficient and Accurate Seizure Focus Identification via iEEGs
por: Yang, Victor B., et al.
Publicado: (2021)