Cargando…

A global equation-of-state model from mathematical interpolation between low- and high-density limits

The ideal gas equation of state (EOS) model is a well-known low-density limiting model. Recently, an ideal dense matter EOS model for the high-density limit symmetric to the ideal gas model has been developed. Here, by mathematically interpolating between the ideal gas and ideal dense matter limitin...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Ti-Wei, Guo, Zeng-Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307579/
https://www.ncbi.nlm.nih.gov/pubmed/35869101
http://dx.doi.org/10.1038/s41598-022-16016-6
Descripción
Sumario:The ideal gas equation of state (EOS) model is a well-known low-density limiting model. Recently, an ideal dense matter EOS model for the high-density limit symmetric to the ideal gas model has been developed. Here, by mathematically interpolating between the ideal gas and ideal dense matter limiting models, we establish a global model containing two EOS in the form of P-V-T and P-S-T for arbitrary ranges of densities. Different from empirical or semi-empirical EOS, the coefficients in the global EOS have a clear physical meaning and can be determined from a priori knowledge. The proposed global model is thermodynamically consistent and continuous. It reduces to the ideal gas model when approaching the low-density limit and to the ideal dense matter model when approaching the high-density limit. Verifications for (4)He show that the global model reproduces the large-range behavior of matter well, along with providing important insight into the nature of the large-range behavior. Compared to the third-order virial EOS and the Benedict–Webb–Rubin EOS, the global P-V-T EOS has higher descriptive accuracy with fewer coefficients over a wide range of data for N(2). The global model is shown to work well in extreme applied sciences. It predicts a linear, inverse relationship between entropy and volume when the temperature-to-pressure ratio is constant, which can explain the entropy-production behavior in shock-Hugoniots.