Cargando…

scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data

With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinelli, Adriano Luca, Wagner, Johanna, Bodenmiller, Bernd, Rapsomaniki, Maria Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307583/
https://www.ncbi.nlm.nih.gov/pubmed/35880127
http://dx.doi.org/10.1016/j.xpro.2022.101578
Descripción
Sumario:With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019).