Cargando…
scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307583/ https://www.ncbi.nlm.nih.gov/pubmed/35880127 http://dx.doi.org/10.1016/j.xpro.2022.101578 |
_version_ | 1784752795044282368 |
---|---|
author | Martinelli, Adriano Luca Wagner, Johanna Bodenmiller, Bernd Rapsomaniki, Maria Anna |
author_facet | Martinelli, Adriano Luca Wagner, Johanna Bodenmiller, Bernd Rapsomaniki, Maria Anna |
author_sort | Martinelli, Adriano Luca |
collection | PubMed |
description | With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019). |
format | Online Article Text |
id | pubmed-9307583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-93075832022-07-24 scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data Martinelli, Adriano Luca Wagner, Johanna Bodenmiller, Bernd Rapsomaniki, Maria Anna STAR Protoc Protocol With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019). Elsevier 2022-07-20 /pmc/articles/PMC9307583/ /pubmed/35880127 http://dx.doi.org/10.1016/j.xpro.2022.101578 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Martinelli, Adriano Luca Wagner, Johanna Bodenmiller, Bernd Rapsomaniki, Maria Anna scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
title | scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
title_full | scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
title_fullStr | scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
title_full_unstemmed | scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
title_short | scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
title_sort | scquest: quantifying tumor ecosystem heterogeneity from mass or flow cytometry data |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307583/ https://www.ncbi.nlm.nih.gov/pubmed/35880127 http://dx.doi.org/10.1016/j.xpro.2022.101578 |
work_keys_str_mv | AT martinelliadrianoluca scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata AT wagnerjohanna scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata AT bodenmillerbernd scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata AT rapsomanikimariaanna scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata |