Cargando…

scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data

With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinelli, Adriano Luca, Wagner, Johanna, Bodenmiller, Bernd, Rapsomaniki, Maria Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307583/
https://www.ncbi.nlm.nih.gov/pubmed/35880127
http://dx.doi.org/10.1016/j.xpro.2022.101578
_version_ 1784752795044282368
author Martinelli, Adriano Luca
Wagner, Johanna
Bodenmiller, Bernd
Rapsomaniki, Maria Anna
author_facet Martinelli, Adriano Luca
Wagner, Johanna
Bodenmiller, Bernd
Rapsomaniki, Maria Anna
author_sort Martinelli, Adriano Luca
collection PubMed
description With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019).
format Online
Article
Text
id pubmed-9307583
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-93075832022-07-24 scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data Martinelli, Adriano Luca Wagner, Johanna Bodenmiller, Bernd Rapsomaniki, Maria Anna STAR Protoc Protocol With mass and flow cytometry, millions of single-cell profiles with dozens of parameters can be measured to comprehensively characterize complex tumor ecosystems. Here, we present scQUEST, an open-source Python library for cell type identification and quantification of tumor ecosystem heterogeneity in patient cohorts. We provide a step-by-step protocol on the application of scQUEST on our previously generated human breast cancer single-cell atlas using mass cytometry and discuss how it can be adapted and extended for other datasets and analyses. For complete details on the use and execution of this protocol, please refer to Wagner et al. (2019). Elsevier 2022-07-20 /pmc/articles/PMC9307583/ /pubmed/35880127 http://dx.doi.org/10.1016/j.xpro.2022.101578 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Martinelli, Adriano Luca
Wagner, Johanna
Bodenmiller, Bernd
Rapsomaniki, Maria Anna
scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
title scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
title_full scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
title_fullStr scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
title_full_unstemmed scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
title_short scQUEST: Quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
title_sort scquest: quantifying tumor ecosystem heterogeneity from mass or flow cytometry data
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307583/
https://www.ncbi.nlm.nih.gov/pubmed/35880127
http://dx.doi.org/10.1016/j.xpro.2022.101578
work_keys_str_mv AT martinelliadrianoluca scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata
AT wagnerjohanna scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata
AT bodenmillerbernd scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata
AT rapsomanikimariaanna scquestquantifyingtumorecosystemheterogeneityfrommassorflowcytometrydata