Cargando…
Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts
Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatal...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307613/ https://www.ncbi.nlm.nih.gov/pubmed/35869136 http://dx.doi.org/10.1038/s41467-022-32002-y |
Sumario: | Ferroelectrics are considered excellent photocatalytic candidates for solar fuel production because of the unidirectional charge separation and above-gap photovoltage. Nevertheless, the performance of ferroelectric photocatalysts is often moderate. A few studies showed that these types of photocatalysts could achieve overall water splitting. This paper proposes an approach to fabricating interfacial charge-collecting nanostructures on positive and negative domains of ferroelectric, enabling water splitting in ferroelectric photocatalysts. The present study observes efficient accumulations of photogenerated electrons and holes within their thermalization length (~50 nm) around Au nanoparticles located in the positive and negative domains of a BaTiO(3) single crystal. Photocatalytic overall water splitting is observed on a ferroelectric BaTiO(3) single crystal after assembling oxidation and reduction cocatalysts on the positively and negatively charged Au nanoparticles, respectively. The fabrication of bipolar charge-collecting structures on ferroelectrics to achieve overall water splitting offers a way to utilize the energetic photogenerated charges in solar energy conversion. |
---|