Cargando…
Prediction performance and fairness heterogeneity in cardiovascular risk models
Prediction models are commonly used to estimate risk for cardiovascular diseases, to inform diagnosis and management. However, performance may vary substantially across relevant subgroups of the population. Here we investigated heterogeneity of accuracy and fairness metrics across a variety of subgr...
Autores principales: | Kartoun, Uri, Khurshid, Shaan, Kwon, Bum Chul, Patel, Aniruddh P., Batra, Puneet, Philippakis, Anthony, Khera, Amit V., Ellinor, Patrick T., Lubitz, Steven A., Ng, Kenney |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307639/ https://www.ncbi.nlm.nih.gov/pubmed/35869152 http://dx.doi.org/10.1038/s41598-022-16615-3 |
Ejemplares similares
-
Exploring the link between Gilbert’s syndrome and atherosclerotic cardiovascular disease: insights from a subpopulation-based analysis of over one million individuals
por: Kartoun, Uri, et al.
Publicado: (2023) -
Cross-modal autoencoder framework learns holistic representations of cardiovascular state
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2023) -
Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction
por: Agrawal, Saaket, et al.
Publicado: (2021) -
Silhouette images enable estimation of body fat distribution and associated cardiometabolic risk
por: Klarqvist, Marcus D. R., et al.
Publicado: (2022) -
Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass
por: Khurshid, Shaan, et al.
Publicado: (2021)