Cargando…
Age estimation from sleep studies using deep learning predicts life expectancy
Sleep disturbances increase with age and are predictors of mortality. Here, we present deep neural networks that estimate age and mortality risk through polysomnograms (PSGs). Aging was modeled using 2500 PSGs and tested in 10,699 PSGs from men and women in seven different cohorts aged between 20 an...
Autores principales: | Brink-Kjaer, Andreas, Leary, Eileen B., Sun, Haoqi, Westover, M. Brandon, Stone, Katie L., Peppard, Paul E., Lane, Nancy E., Cawthon, Peggy M., Redline, Susan, Jennum, Poul, Sorensen, Helge B. D., Mignot, Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307657/ https://www.ncbi.nlm.nih.gov/pubmed/35869169 http://dx.doi.org/10.1038/s41746-022-00630-9 |
Ejemplares similares
-
Sleep spindle detection: crowdsourcing and evaluating performance of experts, non-experts, and automated methods
por: Warby, Simon C., et al.
Publicado: (2014) -
Ambulatory Detection of Isolated Rapid‐Eye‐Movement Sleep Behavior Disorder Combining Actigraphy and Questionnaire
por: Brink‐Kjaer, Andreas, et al.
Publicado: (2022) -
SUBJECTIVE SOCIAL STATUS MODERATES BACK PAIN AND MENTAL HEALTH: A LONGITUDINAL ANALYSIS OF OLDER MEN
por: Mu, Christina, et al.
Publicado: (2022) -
Sleep spindle alterations in patients with Parkinson's disease
por: Christensen, Julie A. E., et al.
Publicado: (2015) -
Correction: Design and Validation of a Periodic Leg Movement Detector
por: Moore, Hyatt, et al.
Publicado: (2015)