Cargando…
Accurate somatic variant detection using weakly supervised deep learning
Identification of somatic mutations in tumor samples is commonly based on statistical methods in combination with heuristic filters. Here we develop VarNet, an end-to-end deep learning approach for identification of somatic variants from aligned tumor and matched normal DNA reads. VarNet is trained...
Autores principales: | Krishnamachari, Kiran, Lu, Dylan, Swift-Scott, Alexander, Yeraliyev, Anuar, Lee, Kayla, Huang, Weitai, Leng, Sim Ngak, Skanderup, Anders Jacobsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307817/ https://www.ncbi.nlm.nih.gov/pubmed/35869060 http://dx.doi.org/10.1038/s41467-022-31765-8 |
Ejemplares similares
-
SMuRF: portable and accurate ensemble prediction of somatic mutations
por: Huang, Weitai, et al.
Publicado: (2019) -
Advances in genomic hepatocellular carcinoma research
por: Huang, Weitai, et al.
Publicado: (2018) -
Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning
por: Laubscher, Emily, et al.
Publicado: (2023) -
PUREE: accurate pan-cancer tumor purity estimation from gene expression data
por: Revkov, Egor, et al.
Publicado: (2023) -
Weakly-supervised deep learning models in computational pathology
por: Augustine, Tanya N.
Publicado: (2022)