Cargando…
End-to-end deep learning framework for printed circuit board manufacturing defect classification
We report a complete deep-learning framework using a single-step object detection model in order to quickly and accurately detect and classify the types of manufacturing defects present on Printed Circuit Board (PCBs). We describe the complete model architecture and compare with the current state-of...
Autores principales: | Bhattacharya, Abhiroop, Cloutier, Sylvain G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307836/ https://www.ncbi.nlm.nih.gov/pubmed/35869131 http://dx.doi.org/10.1038/s41598-022-16302-3 |
Ejemplares similares
-
Deep-learning framework for fully-automated recognition of TiO(2) polymorphs based on Raman spectroscopy
por: Bhattacharya, Abhiroop, et al.
Publicado: (2022) -
Computer assistance in design and manufacture of printed circuit boards
por: Wiskott, D
Publicado: (1977) -
Defect Detection in Printed Circuit Boards Using Semi-Supervised Learning
por: Pham, Thi Tram Anh, et al.
Publicado: (2023) -
Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional Autoencoder
por: Kim, Jungsuk, et al.
Publicado: (2021) -
End-to-end Deep Learning Inference in CMS software framework
por: CMS Collaboration
Publicado: (2023)