Cargando…
Mental State Classification Using Multi-Graph Features
We consider the problem of extracting features from passive, multi-channel electroencephalogram (EEG) devices for downstream inference tasks related to high-level mental states such as stress and cognitive load. Our proposed feature extraction method uses recently developed spectral-based multi-grap...
Autores principales: | Chen, Guodong, Helm, Hayden S., Lytvynets, Kate, Yang, Weiwei, Priebe, Carey E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307990/ https://www.ncbi.nlm.nih.gov/pubmed/35880106 http://dx.doi.org/10.3389/fnhum.2022.930291 |
Ejemplares similares
-
Improved classification performance of EEG-fNIRS multimodal brain-computer interface based on multi-domain features and multi-level progressive learning
por: Qiu, Lina, et al.
Publicado: (2022) -
Perceived Mental Workload Classification Using Intermediate Fusion Multimodal Deep Learning
por: Dolmans, Tenzing C., et al.
Publicado: (2021) -
Label-Based Alignment Multi-Source Domain Adaptation for Cross-Subject EEG Fatigue Mental State Evaluation
por: Zhao, Yue, et al.
Publicado: (2021) -
Corrigendum: Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals
por: Wriessnegger, Selina C., et al.
Publicado: (2022) -
Mental Workload Estimation Based on Physiological Features for Pilot-UAV Teaming Applications
por: Singh, Gaganpreet, et al.
Publicado: (2021)