Cargando…

ARHGEF37 overexpression promotes extravasation and metastasis of hepatocellular carcinoma via directly activating Cdc42

BACKGROUND: The extravasation capability of hepatocellular carcinoma (HCC) cells plays a vital role in distant metastasis. However, the underlying mechanism of extravasation in HCC lung metastasis remains largely unclear. METHODS: The expression of ARHGEF37 in human HCC specimens and HCC cell lines...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xin, Ren, Liangliang, Wu, Junhua, Feng, Rongni, Chen, Yunyang, Li, Ronggang, Wu, Meimei, Zheng, Mingzhu, Wu, Xing Gui, Luo, Wanjun, He, Hongle, Huang, Yanming, Tang, Miaoling, Li, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308268/
https://www.ncbi.nlm.nih.gov/pubmed/35869555
http://dx.doi.org/10.1186/s13046-022-02441-y
Descripción
Sumario:BACKGROUND: The extravasation capability of hepatocellular carcinoma (HCC) cells plays a vital role in distant metastasis. However, the underlying mechanism of extravasation in HCC lung metastasis remains largely unclear. METHODS: The expression of ARHGEF37 in human HCC specimens and HCC cell lines was examined by quantitative RT-PCR, western blot, and immunohistochemistry (IHC) analyses. The biological roles and mechanisms of ARHGEF37/Cdc42 in promoting lung metastasis were investigated in vitro and in vivo using cell lines, patient samples, xenograft models. RESULTS: In the current study, we found that Rho guanine nucleotide exchange factor 37 (ARHGEF37) was upregulated in human HCC samples and was associated with tumor invasiveness, pulmonary metastasis and poor prognosis. Overexpressing ARHGEF37 significantly enhanced the extravasation and metastatic capability of HCC cells via facilitating tumor cell adhesion to endothelial cells and trans-endothelial migration. Mechanistically, ARHGEF37 directly interacted with and activated Cdc42 to promote the invadopodia formation in HCC cells, which consequently disrupted the interaction between endothelial cells and pericytes. Importantly, treatment with ZCL278, a specific inhibitor of Cdc42, dramatically inhibited the attachment of ARHGEF37-overexpressing HCC cells to endothelial cells, and the adherence and extravasation in the lung alveoli, resulting in suppression of lung metastasis in mice. CONCLUSION: Our findings provide a new insight into the underlying mechanisms on the ARHGEF37 overexpression-mediated extravasation and pulmonary metastasis of HCC cells, and provided a potential therapeutic target for the prevention and treatment of HCC pulmonary metastasis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02441-y.