Cargando…

A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation

BACKGROUND: We describe and evaluate a deep network algorithm which automatically contours organs at risk in the thorax and pelvis on computed tomography (CT) images for radiation treatment planning. METHODS: The algorithm identifies the region of interest (ROI) automatically by detecting anatomical...

Descripción completa

Detalles Bibliográficos
Autores principales: Marschner, Sebastian, Datarb, Manasi, Gaasch, Aurélie, Xu, Zhoubing, Grbic, Sasa, Chabin, Guillaume, Geiger, Bernhard, Rosenman, Julian, Corradini, Stefanie, Niyazi, Maximilian, Heimann, Tobias, Möhler, Christian, Vega, Fernando, Belka, Claus, Thieke, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308364/
https://www.ncbi.nlm.nih.gov/pubmed/35869525
http://dx.doi.org/10.1186/s13014-022-02102-6
_version_ 1784752969678323712
author Marschner, Sebastian
Datarb, Manasi
Gaasch, Aurélie
Xu, Zhoubing
Grbic, Sasa
Chabin, Guillaume
Geiger, Bernhard
Rosenman, Julian
Corradini, Stefanie
Niyazi, Maximilian
Heimann, Tobias
Möhler, Christian
Vega, Fernando
Belka, Claus
Thieke, Christian
author_facet Marschner, Sebastian
Datarb, Manasi
Gaasch, Aurélie
Xu, Zhoubing
Grbic, Sasa
Chabin, Guillaume
Geiger, Bernhard
Rosenman, Julian
Corradini, Stefanie
Niyazi, Maximilian
Heimann, Tobias
Möhler, Christian
Vega, Fernando
Belka, Claus
Thieke, Christian
author_sort Marschner, Sebastian
collection PubMed
description BACKGROUND: We describe and evaluate a deep network algorithm which automatically contours organs at risk in the thorax and pelvis on computed tomography (CT) images for radiation treatment planning. METHODS: The algorithm identifies the region of interest (ROI) automatically by detecting anatomical landmarks around the specific organs using a deep reinforcement learning technique. The segmentation is restricted to this ROI and performed by a deep image-to-image network (DI2IN) based on a convolutional encoder-decoder architecture combined with multi-level feature concatenation. The algorithm is commercially available in the medical products “syngo.via RT Image Suite VB50” and “AI-Rad Companion Organs RT VA20” (Siemens Healthineers). For evaluation, thoracic CT images of 237 patients and pelvic CT images of 102 patients were manually contoured following the Radiation Therapy Oncology Group (RTOG) guidelines and compared to the DI2IN results using metrics for volume, overlap and distance, e.g., Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD(95)). The contours were also compared visually slice by slice. RESULTS: We observed high correlations between automatic and manual contours. The best results were obtained for the lungs (DSC 0.97, HD(95) 2.7 mm/2.9 mm for left/right lung), followed by heart (DSC 0.92, HD(95) 4.4 mm), bladder (DSC 0.88, HD(95) 6.7 mm) and rectum (DSC 0.79, HD(95) 10.8 mm). Visual inspection showed excellent agreements with some exceptions for heart and rectum. CONCLUSIONS: The DI2IN algorithm automatically generated contours for organs at risk close to those by a human expert, making the contouring step in radiation treatment planning simpler and faster. Few cases still required manual corrections, mainly for heart and rectum.
format Online
Article
Text
id pubmed-9308364
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-93083642022-07-24 A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation Marschner, Sebastian Datarb, Manasi Gaasch, Aurélie Xu, Zhoubing Grbic, Sasa Chabin, Guillaume Geiger, Bernhard Rosenman, Julian Corradini, Stefanie Niyazi, Maximilian Heimann, Tobias Möhler, Christian Vega, Fernando Belka, Claus Thieke, Christian Radiat Oncol Research BACKGROUND: We describe and evaluate a deep network algorithm which automatically contours organs at risk in the thorax and pelvis on computed tomography (CT) images for radiation treatment planning. METHODS: The algorithm identifies the region of interest (ROI) automatically by detecting anatomical landmarks around the specific organs using a deep reinforcement learning technique. The segmentation is restricted to this ROI and performed by a deep image-to-image network (DI2IN) based on a convolutional encoder-decoder architecture combined with multi-level feature concatenation. The algorithm is commercially available in the medical products “syngo.via RT Image Suite VB50” and “AI-Rad Companion Organs RT VA20” (Siemens Healthineers). For evaluation, thoracic CT images of 237 patients and pelvic CT images of 102 patients were manually contoured following the Radiation Therapy Oncology Group (RTOG) guidelines and compared to the DI2IN results using metrics for volume, overlap and distance, e.g., Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD(95)). The contours were also compared visually slice by slice. RESULTS: We observed high correlations between automatic and manual contours. The best results were obtained for the lungs (DSC 0.97, HD(95) 2.7 mm/2.9 mm for left/right lung), followed by heart (DSC 0.92, HD(95) 4.4 mm), bladder (DSC 0.88, HD(95) 6.7 mm) and rectum (DSC 0.79, HD(95) 10.8 mm). Visual inspection showed excellent agreements with some exceptions for heart and rectum. CONCLUSIONS: The DI2IN algorithm automatically generated contours for organs at risk close to those by a human expert, making the contouring step in radiation treatment planning simpler and faster. Few cases still required manual corrections, mainly for heart and rectum. BioMed Central 2022-07-22 /pmc/articles/PMC9308364/ /pubmed/35869525 http://dx.doi.org/10.1186/s13014-022-02102-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Marschner, Sebastian
Datarb, Manasi
Gaasch, Aurélie
Xu, Zhoubing
Grbic, Sasa
Chabin, Guillaume
Geiger, Bernhard
Rosenman, Julian
Corradini, Stefanie
Niyazi, Maximilian
Heimann, Tobias
Möhler, Christian
Vega, Fernando
Belka, Claus
Thieke, Christian
A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
title A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
title_full A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
title_fullStr A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
title_full_unstemmed A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
title_short A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
title_sort deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308364/
https://www.ncbi.nlm.nih.gov/pubmed/35869525
http://dx.doi.org/10.1186/s13014-022-02102-6
work_keys_str_mv AT marschnersebastian adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT datarbmanasi adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT gaaschaurelie adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT xuzhoubing adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT grbicsasa adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT chabinguillaume adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT geigerbernhard adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT rosenmanjulian adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT corradinistefanie adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT niyazimaximilian adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT heimanntobias adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT mohlerchristian adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT vegafernando adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT belkaclaus adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT thiekechristian adeepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT marschnersebastian deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT datarbmanasi deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT gaaschaurelie deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT xuzhoubing deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT grbicsasa deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT chabinguillaume deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT geigerbernhard deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT rosenmanjulian deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT corradinistefanie deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT niyazimaximilian deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT heimanntobias deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT mohlerchristian deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT vegafernando deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT belkaclaus deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation
AT thiekechristian deepimagetoimagenetworkorgansegmentationalgorithmforradiationtreatmentplanningprinciplesandevaluation