Cargando…
A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
BACKGROUND: We describe and evaluate a deep network algorithm which automatically contours organs at risk in the thorax and pelvis on computed tomography (CT) images for radiation treatment planning. METHODS: The algorithm identifies the region of interest (ROI) automatically by detecting anatomical...
Autores principales: | Marschner, Sebastian, Datarb, Manasi, Gaasch, Aurélie, Xu, Zhoubing, Grbic, Sasa, Chabin, Guillaume, Geiger, Bernhard, Rosenman, Julian, Corradini, Stefanie, Niyazi, Maximilian, Heimann, Tobias, Möhler, Christian, Vega, Fernando, Belka, Claus, Thieke, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308364/ https://www.ncbi.nlm.nih.gov/pubmed/35869525 http://dx.doi.org/10.1186/s13014-022-02102-6 |
Ejemplares similares
-
Correction: A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation
por: Marschner, Sebastian, et al.
Publicado: (2022) -
Feasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion
por: Heinz, Christian, et al.
Publicado: (2016) -
Heart sparing radiotherapy in breast cancer: the importance of baseline cardiac risks
por: Gaasch, Aurélie, et al.
Publicado: (2020) -
Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images
por: Kurz, Christopher, et al.
Publicado: (2016) -
Adjuvant Therapy for Elderly Breast Cancer Patients after Breast-Conserving Surgery: Outcomes in Real World Practice
por: Rogowski, Paul, et al.
Publicado: (2023)