Cargando…
Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran
BACKGROUND: Due to the high mortality of COVID-19 patients, the use of a high-precision classification model of patient’s mortality that is also interpretable, could help reduce mortality and take appropriate action urgently. In this study, the random forest method was used to select the effective f...
Autores principales: | Moslehi, Samad, Rabiei, Niloofar, Soltanian, Ali Reza, Mamani, Mojgan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308952/ https://www.ncbi.nlm.nih.gov/pubmed/35871639 http://dx.doi.org/10.1186/s12911-022-01939-x |
Ejemplares similares
-
Interpretable generalized neural additive models for mortality prediction of COVID-19 hospitalized patients in Hamadan, Iran
por: Moslehi, Samad, et al.
Publicado: (2022) -
Seroprevalence of Hepatitis E Among Hemodialysis Patients: A Report From Hamadan, Iran
por: Eini, Peyman, et al.
Publicado: (2015) -
Seroprevalence of Brucellosis in Butchers, Veterinarians and Slaughterhouse Workers in Hamadan, Western Iran
por: Mamani, Mojgan, et al.
Publicado: (2018) -
Predictors of COVID-19 Mortality in Hemodialysis Patients, Hamadan Province, Iran
por: Jalili, Ebrahim, et al.
Publicado: (2022) -
Knowledge and Attitude of Infertile People toward Assisted Reproductive Techniques in Hamadan, Iran
por: Rabiei, Niloofar, et al.
Publicado: (2022)