Cargando…
Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations
MOTIVATION: Computer-aided analysis of biological images typically requires extensive training on large-scale annotated datasets, which is not viable in many situations. In this paper, we present Generative Adversarial Network Discriminator Learner (GAN-DL), a novel self-supervised learning paradigm...
Autores principales: | Mascolini, Alessio, Cardamone, Dario, Ponzio, Francesco, Di Cataldo, Santa, Ficarra, Elisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308954/ https://www.ncbi.nlm.nih.gov/pubmed/35871688 http://dx.doi.org/10.1186/s12859-022-04845-1 |
Ejemplares similares
-
Mining textural knowledge in biological images: Applications, methods and trends
por: Di Cataldo, Santa, et al.
Publicado: (2016) -
Exploiting Gene Expression Profiles for the Automated Prediction of Connectivity between Brain Regions
por: Roberti, Ilaria, et al.
Publicado: (2019) -
A Deep Learning Approach to the Screening of Oncogenic Gene Fusions in Humans
por: Lovino, Marta, et al.
Publicado: (2019) -
BioSeqZip: a collapser of NGS redundant reads for the optimization of sequence analysis
por: Urgese, Gianvito, et al.
Publicado: (2020) -
DEEPrior: a deep learning tool for the prioritization of gene fusions
por: Lovino, Marta, et al.
Publicado: (2020)