Cargando…
A spatiotemporal ensemble machine learning framework for generating land use/land cover time-series maps for Europe (2000–2019) based on LUCAS, CORINE and GLAD Landsat
A spatiotemporal machine learning framework for automated prediction and analysis of long-term Land Use/Land Cover dynamics is presented. The framework includes: (1) harmonization and preprocessing of spatial and spatiotemporal input datasets (GLAD Landsat, NPP/VIIRS) including five million harmoniz...
Autores principales: | Witjes, Martijn, Parente, Leandro, van Diemen, Chris J., Hengl, Tomislav, Landa, Martin, Brodský, Lukáš, Halounova, Lena, Križan, Josip, Antonić, Luka, Ilie, Codrina Maria, Craciunescu, Vasile, Kilibarda, Milan, Antonijević, Ognjen, Glušica, Luka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308969/ https://www.ncbi.nlm.nih.gov/pubmed/35891647 http://dx.doi.org/10.7717/peerj.13573 |
Ejemplares similares
-
Ecodatacube.eu: analysis-ready open environmental data cube for Europe
por: Witjes, Martijn, et al.
Publicado: (2023) -
Object identification with deep learning using Intel DAAL on Knights Landing processor [Vidyo]
por: Ojika, David Nonso
Publicado: (2017) -
A scalable discrete-time survival model for neural networks
por: Gensheimer, Michael F., et al.
Publicado: (2019) -
Breast cancer detection using deep convolutional neural networks and support vector machines
por: Ragab, Dina A., et al.
Publicado: (2019) -
Influence of tweets and diversification on serendipitous research paper recommender systems
por: Nishioka, Chifumi, et al.
Publicado: (2020)