Cargando…
An effective short-text topic modelling with neighbourhood assistance-driven NMF in Twitter
Social media such as Twitter connect billions of people by allowing them to exchange their thoughts via short-text communication. Topic modelling is a widely used technique for analysing short texts. Discovering topic clusters in short-text collections faces issues with distance-based, density-based...
Autores principales: | Athukorala, Shalani, Mohotti, Wathsala |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309003/ https://www.ncbi.nlm.nih.gov/pubmed/35911485 http://dx.doi.org/10.1007/s13278-022-00898-5 |
Ejemplares similares
-
A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts
por: Egger, Roman, et al.
Publicado: (2022) -
Twitter trends in #Parasitology determined by text mining and topic modelling
por: Ellis, John T., et al.
Publicado: (2023) -
Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data
por: Weisser, Christoph, et al.
Publicado: (2022) -
Theorems on Positive Data: On the Uniqueness of NMF
por: Laurberg, Hans, et al.
Publicado: (2008) -
Prior Knowledge Driven Joint NMF Algorithm for ceRNA Co-Module Identification
por: Deng, Jin, et al.
Publicado: (2018)