Cargando…

Sentiment analysis of COVID-19 social media data through machine learning

Pandemics are a severe threat to lives in the universe and our universe encounters several pandemics till now. COVID-19 is one of them, which is a viral infectious disease that increased morbidity and mortality worldwide. This has a negative impact on countries’ economies, as well as social and poli...

Descripción completa

Detalles Bibliográficos
Autores principales: Dangi, Dharmendra, Dixit, Dheeraj K., Bhagat, Amit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309239/
https://www.ncbi.nlm.nih.gov/pubmed/35912062
http://dx.doi.org/10.1007/s11042-022-13492-w
Descripción
Sumario:Pandemics are a severe threat to lives in the universe and our universe encounters several pandemics till now. COVID-19 is one of them, which is a viral infectious disease that increased morbidity and mortality worldwide. This has a negative impact on countries’ economies, as well as social and political concerns throughout the world. The growths of social media have witnessed much pandemic-related news and are shared by many groups of people. This social media news was also helpful to analyze the effects of the pandemic clearly. Twitter is one of the social media networks where people shared COVID-19 related news in a wider range. Meanwhile, several approaches have been proposed to analyze the COVID-19 related sentimental analysis. To enhance the accuracy of sentimental analysis, we have proposed a novel approach known as Sentimental Analysis of Twitter social media Data (SATD). Our proposed method is based on five different machine learning models such as Logistic Regression, Random Forest Classifier, Multinomial NB Classifier, Support Vector Machine, and Decision Tree Classifier. These five classifiers possess various advantages and hence the proposed approach effectively classifies the tweets from the Twint. Experimental analyses are made and these classifier models are used to calculate different values such as precision, recall, f1-score, and support. Moreover, the results are also represented as a confusion matrix, accuracy, precision, and receiver operating characteristic (ROC) graphs. From the experimental and discussion section, it is obtained that the accuracy of our proposed classifier model is high.