Cargando…
Evaluation of Epidermal Growth Factor Receptor 2 Status in Gastric Cancer by CT-Based Deep Learning Radiomics Nomogram
PURPOSE: To explore the role of computed tomography (CT)-based deep learning and radiomics in preoperative evaluation of epidermal growth factor receptor 2 (HER2) status in gastric cancer. MATERIALS AND METHODS: The clinical data on gastric cancer patients were evaluated retrospectively, and 357 pat...
Autores principales: | Guan, Xiao, Lu, Na, Zhang, Jianping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309372/ https://www.ncbi.nlm.nih.gov/pubmed/35898877 http://dx.doi.org/10.3389/fonc.2022.905203 |
Ejemplares similares
-
The Value of Predicting Human Epidermal Growth Factor Receptor 2 Status in Adenocarcinoma of the Esophagogastric Junction on CT-Based Radiomics Nomogram
por: Wang, Shuxing, et al.
Publicado: (2021) -
The Potential of Radiomics Nomogram in Non-invasively Prediction of Epidermal Growth Factor Receptor Mutation Status and Subtypes in Lung Adenocarcinoma
por: Zhao, Wei, et al.
Publicado: (2020) -
A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer
por: Li, Yexing, et al.
Publicado: (2020) -
Accurate preoperative staging and HER2 status prediction of gastric cancer by the deep learning system based on enhanced computed tomography
por: Guan, Xiao, et al.
Publicado: (2022) -
CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer
por: Zeng, Qingwen, et al.
Publicado: (2022)