Cargando…
A Unifying Framework for Reinforcement Learning and Planning
Sequential decision making, commonly formalized as optimization of a Markov Decision Process, is a key challenge in artificial intelligence. Two successful approaches to MDP optimization are reinforcement learning and planning, which both largely have their own research communities. However, if both...
Autores principales: | Moerland, Thomas M., Broekens, Joost, Plaat, Aske, Jonker, Catholijn M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309375/ https://www.ncbi.nlm.nih.gov/pubmed/35898393 http://dx.doi.org/10.3389/frai.2022.908353 |
Ejemplares similares
-
Active feature elicitation: An unified framework
por: Das, Srijita, et al.
Publicado: (2023) -
A Unified Framework on Generalizability of Clinical Prediction Models
por: Wan, Bohua, et al.
Publicado: (2022) -
Heterogeneous mission planning for a single unmanned aerial vehicle (UAV) with attention-based deep reinforcement learning
por: Jung, Minjae, et al.
Publicado: (2022) -
A Model of Unified Perception and Cognition
por: Wang, Pei, et al.
Publicado: (2022) -
Video captioning based on vision transformer and reinforcement learning
por: Zhao, Hong, et al.
Publicado: (2022)